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Abstract. In this paper we propose a new method to extract the vortices, sources, and sinks from the dense motion
field preliminary estimated between two images of a fluid video. This problem is essential in meteorology for
instance to identify and track depressions or convective clouds in satellite images. The knowledge of such points
allows in addition a compact representation of the flow which is very useful in both experimental and theoretical
fluid mechanics. The method we propose here is based on an analytic representation of the flow. This approach has
the advantage of being robust, simple, fast and requires few parameters.
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1. Introduction

Since several years, the analysis of video sequences
showing the evolution of fluid phenomenon gave rise
to a great attention from the image analysis community
[9, 12, 16, 18, 31]. The applications concern domains
such as experimental visualization in fluid mechan-
ics, environmental sciences (oceanography, meteoro-
logy, . . .), or medical images. In all these application
domains, it is of primary interest to measure the instan-
taneous velocity of fluid particles. In oceanography one
is interested to track sea streams and to observe the drift
of some passive entities [11, 28]. In meteorology, both
operational and experimental, the task under consid-
eration is the reconstruction of wind fields from the
displacements of clouds as observed in various satel-
lite images [3, 23, 27]. In medical imaging the issue
is to visualize and analyze blood flow inside the heart,
or inside blood vessels [13, 29]. The images involved
in each domain have their own characteristics and are

provided by very different sensors. The huge amount of
data of different kinds available, the range of applica-
tive domains involved, and the technical difficulties in
the processing of all these peculiar image sequences ex-
plain the interest of researchers of the image analysis
community.

In this context, one problem of interest is the ex-
traction and the characterization of the critical—or
singular—points of the flow. These points are the
centers of kinematical events such as swirl, vortices
or sinks/sources. The latter correspond to areas of
apparent diverging 2D motions which are either re-
lated to 3D motions not parallel to the image plane
or to real sinks or sources of matter. The knowledge
of the type and location of these points is for in-
stance of great interest in meteorology to detect and
track violent and sudden meteorological events such
as convective clouds or tornados [19, 24]. The knowl-
edge of all these points is thus precious to understand
and predict the flows of interest. It also allows for
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compact and hierarchical representations of the flow
[14–16, 22].

Most of the methods used so far to localize and char-
acterize critical points are based on local linear phase
portrait approximation of the flow around points where
the velocity vanishes (singular points). These tech-
niques have been pioneered by Rao and Jain’s work
[25] originally proposed in the context of wood or wafer
inspection. The authors developed a non linear least
squares technique to estimate a first-order flow model
from the oriented texture field. It is associated to a vote
technique to locate and classify critical points. The ap-
proach has been extended to fluid images by Ford et al.
for linear [16] and non-linear phase portraits [15]. The
localization of critical points is here based on the use
of Poincaré index (or winding number). Winding num-
ber technique has also been used from previously esti-
mated dense velocity fields together with a phase por-
trait model [9] or without it [21]. Maurizot et al. [19]
proposed a statistical method based on the study of bias
and variance of a risk function. This method allows one
to compute simultaneously a linear phase portrait, the
critical point location, and a rectangular domain of lin-
earity around each point. This method is less sensitive
to noise due to its statistical nature. Nevertheless unlike
index technique it does not allow formally the recov-
ery of all the singular points of the flow. In practice
only the most “attractive” ones are captured. Another
method based on analytic modeling of the flow and
the Cauchy’s theorem of residues has been proposed in
[22] in the context of medical images. Based on our ex-
perience, this approach is unfortunately very sensitive
to noise.

As in this latter work, the technique we propose to de-
tect and characterize vortices, sinks and sources relies
on a complex modeling of the velocity field. Not only it
allows a robust extraction and identification of singular
points, but it also enables to build a compact paramet-
ric representation of the velocity field. This parametric
representation is based on the Rankine model of vortex.

The paper is organized as follows. After recalling
some basic definitions and properties of planar vector
fields on which our work relies, we show how the ve-
locity fields may be separated into its two solenoidal
and irrotational components which gather respectively
the divergence and the vorticity of the velocity field. We
show also how the location of the critical points may be
obtained as local extrema of a complex potential func-
tion of the flow. It is shown also how this methodology
gives access to additional information on the flow such

as streamlines. A second part is devoted to the presen-
tation of the Rankine model and to its estimation from a
dense velocity field. In the last part of the paper, the per-
formance of the method is demonstrated on different
kinds of meteorological image sequences.

2. Planar Vector Fields

The method we propose in this paper aims at the re-
covery of vortices and sinks/sources of a previously es-
timated instantaneous velocity field. We will consider
only 2D fields defined over the bounded image plane.

A lot of techniques exist in the literature to estimate
a 2D dense motion field from a sequence of images. In
the field of experimental visualization in fluid mechan-
ics, most of the methods are correlation based [1]. The
displacement of a fluid element is obtained by max-
imizing a local correlation function. In meteorology,
such methods are also used to recover wind fields from
cloud tracking [23, 26]. These methods are fast, but
lead usually to sparse and sometimes inaccurate mo-
tion fields due to the necessary quantization of veloc-
ities. The sparse and quantized nature of the motion
field prevents from recovering accurately valuable in-
formation such as trajectories, streamlines, vorticity, or
divergence of the flow.

Dense motion field estimators for fluid flows have
also been studied by the computer-vision community.
These estimators are essentially based on the seminal
work of Horn and Schunck [17]. They resort to the min-
imization of an objective functional composed of two
terms. A data term based on a photometric consistency
assumption and a regularization term which enforces
the smoothness of the solution. Recently functionals
dedicated to fluid images have been proposed [6, 10].
They incorporate a dedicated data-term based on the
continuity equation of fluid mechanics. Additional im-
provements are obtained by considering tailor-made
regularization terms preserving the concentrations of
divergence and vorticity [10].

Before explaining the core of our method to recover
and characterize the singularities of the flow, let us
review some useful definitions and properties of planar
vector fields.

2.1. Definitions and Properties

A planar vector field ω is a R
2-valued map defined on

a bounded set � of R
2 and we shall denote ω(x, y)

�=
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(u(x, y), v(x, y)) where x and y stand for the spatial
coordinates. The flow of a fluid is the vector field of
instantaneous velocities. If the flow is unsteady then
the velocity depends on time as well as on position,
and we should note ω(x, y, t). In the following, unless
specified otherwise, we always refer to time depen-
dent vector fields. For the sake of simplicity we will
therefore omit the time index. Throughout the paper
we will also suppose that each component of the vec-
tor field is twice continuous and differentiable: u and
v ∈ C2(�, R).

The operator ∇ denotes the symbolic vector op-
erator whose components are the partial derivatives
with respect to x and y coordinates: ∇ = ( ∂

∂x , ∂
∂y ). If

∇ operates on a scalar field φ(x, y) one gets a vec-
tor field ∇φ(x, y) = ( ∂φ(x,y)

∂x ,
∂φ(x,y)

∂y ) which is the
gradient of a scalar field. The symbolic dot product
div(ω)

�= ∇ · ω = ∂u
∂x + ∂v

∂y is the divergence of
the vector field. The integral of this quantity over a
region R amounts to compute the flux of the vector
field across the boundary of the region ∂R (divergence
theorem):

∫ ∫
R

div(ω) =
∫

∂R
ω · n, (1)

where n denotes the outward normal to the boundary
∂R. A vector field whose divergence is null everywhere
is called solenoidal.

In a similar way, noting ω⊥ �= (−v, u) the orthogo-
nal counterpart of ω, we define the vorticity of the vec-
tor field as the quantity: curl(ω)

�= ∇ · ω⊥ = ∂u
∂y − ∂v

∂x .
Its integral over a simply connected region R is equiv-
alent to the circulation of the vector along the region
boundary (Green theorem):

∫ ∫
R

curl(ω) =
∫

∂R
ω · τ , (2)

where τ denotes the unitary tangent along the closed
curve ∂R. A vector field whose curl vanishes identi-
cally is called irrotational.

For irrotational vector fields, the application of
Green theorem shows that the circulation of the vector
along a closed curve is null. The circulation along an
arc joining two points depends therefore only on these
two end points. In particular, one can define uniquely
a function φ(x, y) giving the circulation of ω along an
arbitrary path from the origin to (x, y). The circulation
on a path with endpoints p and q is then φ(p) − φ(q).

Considering the circulation of ω along an infinitesimal
arc parallel to x , we have:

∂φ

∂x
= lim

�x→0

1

�x
[φ(x + �x, y) − φ(x, y)]

= lim
�x→0

1

�x

∫ x+�x

x
u(t, y) dt = u(x, y).

Using the same technique along y one thus gets the
classical result that for irrotational fields there exists
a scalar function φ, called the velocity potential, such
that:

ω = ∇φ. (3)

The velocity at point s = (x, y) is therefore orthogonal
to the curve {φ(x, y) = c}. These curves are normal to
the integral lines of the velocity field (i.e. the stream-
lines, or the trajectories for steady flows).

Now, if ω is solenoidal it is easy to see that the field
ω⊥ is irrotational and therefore, there exists a scalar
function ψ , called the stream function such that:

ω⊥ = ∇ψ. (4)

The equipotential curves, {ψ(x, y) = c}, are the stream-
lines of the flow. For a flow both irrotational and
solenoidal, it is interesting to note that level curves of
φ and ψ form an orthogonal network.

2.2. Complex Potential

If the field is both irrotational and solenoidal from
Eqs. (3) and (4) we deduce:

∂φ

∂x
= ∂ψ

∂y
and

∂φ

∂y
= −∂ψ

∂x
. (5)

These equations are the Cauchy conditions that must
be satisfied for the function:

F(z)
�= φ(x, y) + iψ(x, y), (6)

of the complex variable z = x + iy to be z-differenti-
able or analytic. Its complex derivative is:

F ′(z) = ∂φ(x, y)

∂x
+ i

∂ψ(x, y)

∂x
= f (z) = u(x, y) − iv(x, y),
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that is the complex conjugate of the complex represen-
tation of the velocity field f (z) = u(x, y) + iv(x, y).
The knowledge of this function F(z), called the com-
plex potential, provides a triple advantage. By deriva-
tion it gives the velocity, and it allows one to ob-
tain without any computation the curves {φ(x, y) =
c} and their orthogonal counterpart, the streamlines
{ψ(x, y) = c}. It might be therefore very fruitful and
practical to describe the velocity field as complex func-
tions. We will rely on a peculiar case of such a modeling
in the following section.

Irrotational and solenoidal fields play an important
role in vector field analysis. As a matter of fact these two
types of fields can be combined to represent uniquely
any arbitrary continuous vector field which vanishes at
infinity. This is the Helmholtz representation of vector
fields ω = ωso + ωir . For any vector field ω one can
define the velocity potential φ of its irrotational compo-
nent, and the stream function ψ of its solenoidal com-
ponent. As a result, the complex potential F = φ + iψ
can be defined. It reduces to a real function for irro-
tational flows and to a pure imaginary function for
solenoidal vector fields. The complex function is nev-
ertheless not anymore analytic and the velocities are
then obtained from Eqs. (3) and (4) i.e., ωir = ∇φ,
ωso = ∇ψ .

When the null border condition at infinity cannot be
imposed, the representation is extended by the intro-
duction of a third laminar component. A laminar field
is a vector field that is both irrotational and solenoidal.
The extended Helmholtz representation is then:

ω = ωlam + ωso + ωir . (7)

In our applications, the laminar component accounts
for a global transportation flow and for the effect of
sources/sinks or vortices outside of the image plane. In
the following we assume that this very smooth compo-
nent is known. It is indeed easy to estimate a laminar
component from a pair of images, and many techniques
from computer vision are available. For example, one
can use a standard motion estimation technique based
on Horn and Schunck model (as the one in [20]) with
a strong first-order regularization. Such an estimation
will smooth out the diverging and rotating components
of motion fields. In this work, we used a particular case
of the technique proposed in [10], which, through an
adequate regularization prior, strongly enforces a null
divergence together with a null curl. The resulting mo-
tion field can be associated to the laminar part of the

flow. From now we will always refer to motion fields
vanishing at infinity, and consequently to the original
Helmholtz representation.

2.3. Irrotational and Solenoidal Field Separation

Equations (3) and (4) characterize respectively irrota-
tional fields and solenoidal fields. The potential func-
tions φ and ψ of a given continuous vector field ω are
therefore related to its irrotational and solenoidal parts
respectively. Taking the divergence of (3) and (4) leads
to

�φ = div(ω) and �ψ = curl(ω). (8)

Both potential functions are therefore the solution of
Poisson equations. Assuming that the curl and diver-
gence vanish at infinity, one has to face a well known
Dirichlet problem whose solution may be obtained
through 2D Green kernel:

h(x, y) = 1

2
ln(x2 + y2). (9)

With that kernel and noting ∇⊥ = (− ∂
∂y , ∂

∂x ), one can
define two orthogonal vector fields:

w1(x, y)

= 1

2π

∫ ∞

−∞

∫ ∞

−∞
∇h(x − u, y − v) divω(x, y) du dv

(10)
w2(x, y)

= 1

2π

∫ ∞

−∞

∫ ∞

−∞
∇⊥h(x − u, y − v) curlω(x, y) du dv,

which have the same divergence and curl as ω and
which vanish at infinity. Assuming the vector field ω
has bounded components, it is easy to prove that it
is uniquely specified by its divergence and curl and
consequently w1 = wir and w2 = wso.

To show this, let us denote any vector fields f 1
and f 2 with exactly the same curl and divergence and
which both tend to zero at infinity; let also the field
d = f 1 − f 2 be their difference. Assuming that d
is continuously differentiable, then it admits an ana-
lytic complex potential (as div d = 0 and curl d = 0)
F(z) = P(x, y)+ i Q(x, y). Its derivative F ′(z) is then
also analytic, bounded and tends to zero at infinity
(since F ′(z) = d̄). From Liouville theorem we know
that any bounded analytic function over the whole com-
plex plane is constant. Therefore, F ′(z) is constant and
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since its value is zero at infinity, F ′(z) is null every-
where. The same goes for d = F̄ ′.

Knowing the divergence and the curl of a veloc-
ity field, the extraction of the irrotational and the
solenoidal components through convolutions (10) may
be numerically tricky since it lies on infinite support.

Instead of that, using a spectral Fourier representa-
tion of the flow ω̂ = (F[u],F[v]) such that:

f̂ (k) = F[ f ] = 1

2π

∫ ∫
f (s)ei〈k,s〉 ds, and

f (s) = 1

2π

∫ ∫
f̂ (k)e−i〈k,s〉 dk (11)

with wave vector k = (µ1, µ2), (µ1, µ2) indicating fre-
quencies along x and y axis respectively. In the Fourier
domain, we have:

F[curl(ω)] = F[curl(ωir )] = 〈k⊥, ω̂ir (k)〉 = 0,
(12)

F[div(ω)] = F[div(ωso)] = 〈k, ω̂so(k)〉 = 0.

Therefore, assuming the vector field ω is known, the
irrotational and the solenoidal component may be re-
spectively obtained through:

ω̂ir (k) = 〈k, ω̂(k)〉 k
‖k‖2

(13)

and

ω̂so(k) = 〈k⊥, ω̂(k)〉 k⊥

‖k⊥‖2
. (14)

The irrotational and solenoidal components are finally
obtained from the inverse Fourier transform.

It is important to note that the Fourier transform is
defined for periodic signals. When the motion field is
non-periodic (which is the case in practice), a classi-
cal technique consists to add identically end to end the
motion field in order to apply the Fourier transform
on the resulting periodic signal. To attenuate boundary
artifacts that may appear as a consequence of this ma-
nipulation, it is usual to apply this kind of technique
on a larger motion field that contains the original one,
bordered with zeros on all sides. This way, connec-
tions between two consecutive fields are softer, which
attenuates the apparition of non-desired signals in the
Fourier domain. In practice, for an original motion field
whose size is (N × M), we use a (9N ×9M) image for
the Fourier transform.

2.4. Potential Functions Estimation

As it has been shown in the previous section, the
knowledge of the complex potential function and more
generally of its components φ and ψ might be very
useful as it allows a complete description of the ve-
locity field. In turn, if the velocity field and its irro-
tational and solenoidal components are known, func-
tions φ and ψ can be easily estimated, as wir = ∇φ

and w⊥
so = ∇ψ . Note that, if g is a C2 function,

g(x, y) = g(0, 0) + ∫
γ

∇g(x, y) · dγ , for any path
γ from (0, 0) to (x, y). Averaging this relation over the
two paths joining (0, 0) to (x, y) along the sides of a
rectangle, we get:




φ(x, y) = 1

2

( ∫ x

0
uir (t, y) dt +

∫ y

0
vir (x, t) dt

+
∫ x

0
uir (t, 0) dt +

∫ y

0
vir (0, t) dt

)
+ φ(0, 0),

and

ψ(x, y) = 1

2

( ∫ y

0
uso(x, t) dt −

∫ x

0
vso(t, y) dt

+
∫ y

0
uso(0, t) dt −

∫ x

0
vso(t, 0) dt

)
+ ψ(0, 0).

(15)

Both terms of relation (15) may be conveniently nu-
merically computed, as they consist in 1D integrations
along image rows and columns.

2.5. Extrema of the Potential Function

From (3), it can be observed that characteristic points
of the irrotational flow component (i.e., points s for
which ωir (s) = ∇φ(s) = 0) correspond to local ex-
trema of the velocity potential φ. Of course the same
relationship links extrema of the stream function and
characteristic points of the solenoidal component. Oth-
erwise, around a singular point s = (x, y), the velocity
distribution of a fluid flow can be accurately approxi-
mated (and characterized) by the so-called linear phase
portrait [2]. Within some neighborhood around s, one
can fit a parametric velocity model of the form ω = As
where A is a 2 × 2 matrix. The qualitative characteri-
zation of the motion field in the neighborhood of this
singular point s relies on the structure of matrix A. Six
typical motion configurations can be identified from its
canonical Jordan form [2, 16] (see Fig. 1).

A second-order approximation of the velocity po-
tential and the stream function around a singular point
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Figure 1. Singular points classification based on the structure of the linear phase portrait matrix A; �(A)
�= tr2(A) − 4det(A).

leads to:

ωir = ∇φ(s + ε) = Hφ(s)ε + o(ε) (16)

and

ω⊥
so = ∇ψ(s + ε) = Hψ (s)ε + o(ε), (17)

with Hessian

Hφ(s) =

 ∂2φ

∂x2
∂2φ

∂xy

∂2φ

∂xy
∂2φ

∂y2


 and Hψ (s) =


 ∂2ψ

∂x2
∂2ψ

∂xy

∂2ψ

∂xy
∂2ψ

∂y2


.

From Eq. (16), we see that the phase portrait of irrota-
tional field around singular point s is given by Hφ(s).
As this matrix is symmetric (since curl ωir = 0), it
has real eigenvalues. Around local extrema the matrix
is in addition positive or negative definite. In that case,

the eigenvalues are therefore all positive or all negative.
Following the classification of Fig. 1, the singular point
corresponding to a maximum or a minimum is thus a
node or a star node. For the solenoidal field the phase
portrait is given by

Aψ =

 ∂2ψ

∂xy
∂2ψ

∂y2

− ∂2ψ

∂x2 − ∂2ψ

∂xy




whose trace is null: the singular point is a center. These
three configurations characterize well the flow in the
vicinity of vortices and sink/sources. The knowledge of
the two potential functions gives us therefore a practical
way to extract vortices, sinks or sources. As a matter of
fact, to estimate those peculiar singular points one has
just to identify the points corresponding to extremal
values of the potential function. Unlike to Poincaré in-
dices techniques, the other configurations—which are
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less informative from a physical point of view—are
discarded by the proposed method since they do not
correspond to extremal value of the potential functions.

3. Rankine Model of Flows

One of the simplest models of velocity field for fluid
flows comes from the Rankine model of vortex. It con-
sists in approximating the velocity field of a vortex as a
vector field of constant curl inside a disk representing
the shape and the location of the vortex. Beyond this
circular domain the velocity decreases as the inverse
squared distance to the disk center and the vorticity
is null. A complex representation of this velocity field
reads:

fı (z)
�=




gı (z) = − iβı (z − zı )

|z − zı |2 if |z − zı | ≥ rı

hı (z) = − iβı (z − zı )

r2
ı

if |z − zı | < rı ,

(18)

where rı is the singularity radius; zı
�= xı + iyı de-

notes the complex vortex location and βı its strength.
Based on a similar model the velocity field associated
to, source/sink in the plane can be modeled as:

f (z)
�=




g (z) = α (z − z )

|z − z |2 if |z − z | ≥ r

h (z) = α (z − z )

r2


if |z − z | < r

(19)

where α denotes the sink/source strength. If α > 0,
this constitutes a source model, whereas if α < 0
we are in presence of a sink. From these equations it
is easy to verify that functions fı are solenoidal (i.e.,
div( fı ) = 0) whereas functions f are irrotational (i.e.,
curl( f ) = 0). The functions hı (respectively h ) are of
constant curl, curl(ω) = 2βı

r2
ı

, (resp. of constant diver-
gence, div(ω) = 2α

r2


) whereas functions gı (resp. g )
have a null divergence and vorticity everywhere.

These two fields can be composed to model a fluid
flow with P vortices and N sources/sinks:

f (z) =
P∑

ı=1

fı (z) +
N∑

=1

f (z). (20)

Figure 2 shows examples of fields associated respec-
tively with a vortex, a source and, a composition of both
entities at the same location. Figure 3 shows examples

Figure 2. Velocity fields associated to (a) a source, (b) a vortex,
and to (c) the composition of a source and of a vortex.

Figure 3. Example of Rankine models supports; disks associated
to vortices are light-colored whereas sources/sinks are in black;
intermediary-colored regions denote areas where the curl and the
divergence are simultaneously non-null.

of linearity domains associated to such a compound
field.

3.1. Velocity Potential and Stream-Function

From the Rankine model expression, it is informative
to deduce the associated potential functions. To that
end, it is necessary to consider separately the possible
different cases.

3.1.1. Vortex Model. Let us consider a Rankine vor-
tex centered at zı = 0 (for simplicity) and of radius rı

and strength βı . According to Eq. (18), the associated
velocity field outside of the disk reads:

f (x + iy) = βı

(
y

x2 + y2
− i

x

x2 + y2

)
= u(x, y) + iv(x, y) (21)

According to Eq. (15) and recalling that:




∫
y

x2 + y2
dx = Arctan

(
x

y

)
∫

y

x2 + y2
dy = 1

2
ln(x2 + y2),

(22)
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one gets:




φ(x, y) = βı Arctan

(
x

y

)
ψ(x, y) = βı

2
ln(x2 + y2),

(23)

which gives us the associated complex potential

F(z) = φ(x, y) + iψ(x, y) = iβ ln(z). (24)

Inside a vortex disk we have now f (x + iy) =
− iβ

r2 (x + iy). Integrating in the same way function
u(x, y) and v(x, y) we obtain:




φ(x, y) = 0

ψ(x, y) = β

2r2
(x2 + y2).

(25)

3.1.2. Source/Sink Model. In a similar way, we ob-
tain the complex potential component associated to
a sink/source. Outside of the circular linearity do-
main centered at the origin and representative of a
source/sink of strength α we have the velocity po-
tential and the stream function given by:




φ(x, y) = α

2
ln(x2 + y2)

ψ(x, y) = αArctan

(
y

x

)
.

(26)

The complex potential is therefore F(z) = φ(x, y) +
iψ(x, y) = α ln(z).

Inside of this circular domain the velocity potential
and the stream function are:


φ(x, y) = α

2r2
(x2 + y2)

ψ(x, y) = 0.

(27)

From these expressions it may be checked that out-
side the different circles the functions φ and ψ do
not have any local minima/maxima whereas inside
the disks each function respectively admits local max-
ima/minima at the disk centers. These centers corre-
spond to the location of singular points associated to
vortices, sinks or sources of the flow.

3.2. Rankine Model Estimation from a Velocity Field

As recalled in Section 2 the knowledge of the instanta-
neous velocity field ω of a fluid flow enables to recover
its associated stream-function and velocity potential.
We saw also that the knowledge of both potential func-
tions gives a practical way to identify all the vortices
and sinks/sources of the flow by extracting their minima
and maxima. In addition, in order to define completely
the flow in terms of its Rankine parametric representa-
tion we need now to estimate the strength and the circu-
lar linearity domain associated to the different singular
points.

To that end, we will first assume that the field ω
previously estimated from a dense estimator such as
[10] has been separated into its two irrotationnal and
solenoidal components by means of Eqs. (13) and (14).
Considering now these two components as available
data, and assuming that the solenoidal and irrotational
components of the flow differ from the two correspond-
ing components of the compound Rankine model by a
white Gaussian noise of variance σ 2, we get:

fso(z) =
P∑

ı=1

( fı (z) + a(z) + ib(z)) and

fir (z) =
N∑

=1

( f (z) + a(z) + ib(z))

with a(z) and b(z) ∼ N (0, σ 2). Function fso
�= uso +

ivso (resp. fir
�= uir + ivir ) is the complex representa-

tion of wso (resp. of wir ), and P and N denote respec-
tively the number of vortices and sources/sinks of the
flow. Their locations and number have been obtained
by the technique described previously.

A maximum likelihood estimation of the Rank-
ine model parameters leads to maximize with respect
to the unknown parameters vector �

�= (rı , βı )P
ı=1 ×

(r , α )N
=1 the following log-likelihood defined on the

whole image domain �:

L(�) =
∫ ∫

�

∣∣∣∣∣ fso(z) −
∑

ı

fı (z)

∣∣∣∣∣
2

dz

︸ ︷︷ ︸
Lso

+
∫ ∫

�

∣∣∣∣∣ fir (z) −
∑



f (z)

∣∣∣∣∣
2

dz

︸ ︷︷ ︸
Lir

. (28)
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With the assumption that two circular linearity domains
of the same nature do not intersect each other, the
solenoidal part of this expression can be expressed as:

Lso(�) =
P∑

ı=1

∫ ∫
Dı

∣∣∣∣∣ fso(z) − hı (rı , z) −
∑
k �=ı

gk(z)

∣∣∣∣∣
2

dz

+
∫ ∫

D̄so

∣∣∣∣∣ fso(z) −
P∑

ı=1

gp(z)

∣∣∣∣∣
2

dz, (29)

where Dı denotes the disk associated to the ı th sin-
gularity and D̄so

�= � − Dso is the complementary of
Dso = ⋃P

ı=1 Dı . The irrotational part being obviously
expressed in a very semilar way in considering a new
set of non-overlapping disk domains Dir = ⋃N

=1 D

and the adequate associated functions. It is important to
remark that the non-overlapping assumption only ap-
plies to domains associated to singularities of the same
type. Likelihood (29) is still valid for a vortex and a
source combined in a swirl. For the sake of simplicity,
we will develop the proposed method in the solenoidal
case, and only give results of the irrotational part. They
are indeed obtained in an exactly similar way.

To ensure that two singularity domains of the same
type do not intersect each others, we have to penalize
strongly such intersections in the functional to be mini-
mized. Let us note this penalty C(rı , r ) applied on any
pair of singularities (ı,  ) with radius (rı , r ). The aim
is now to find � that minimizes Lcso(�) such that:

Lcso(�) = Lso(�) +
∑

(ı, ),ı �=

C(rı , r ) (30)

where (ı,  ) denotes any pair of singularities. Expand-
ing this expression in the solenoidal case one gets:

Lcso(�) =
∑

ı

∫ ∫
Dı

∥∥∥∥ωso(s) + (s − sı )⊥

r2
i

βı

+
∑
k �=ı

(s − sk)⊥

‖s − sk‖2
βk

∥∥∥∥∥
2

ds

+
∫ ∫

D̄so

∥∥∥∥∥ωso(s) +
∑

k

(s − sk)⊥

‖s − sk‖2
βk

∥∥∥∥∥
2

ds

+
∑

(ı, ),ı �=

C(rı , r ). (31)

A minimizer of Eq. (31) is given by the resolution of
∇Lcso = 0.

3.2.1. Radius Estimation. Following the derivation
developed in the appendix (52) we have:

∂Lcso(�)

∂rı
= −4

∫ ∫
Dı

[
ωso(s) + (s − sı )⊥

r2
i

βı

+
∑
k �=ı

(s − sk)⊥

‖s − sk‖2
βk

]
· (s − sı )⊥

r3
ı

βı ds

+
∑
k �=ı

∂C(rı , rk)

∂rı
. (32)

Zeroing this partial derivative yields:

∂Lcso(�)

∂rı
= 0

⇔ 4
∫ ∫

Dı

[
wso(s) ∧ (s − sı ) − (s − sı )

·
∑
k �=ı

(s − sk)βk

‖s − sk‖2

]
ds −

∫ ∫
Dı

4‖s − sı‖2βı

r2
ı

ds

+ r3
ı

βı

∑
k �=ı

∂C(rı , rk)

∂rı
= 0. (33)

This equation can be further simplified. As a matter
of fact, the term

∫∫
Dı

(s − sı ) · ∑
k �=ı

(s−sk )βk

‖s−sk‖2 ds can be
rewritten as:

∫ rı

0

[ ∫ 2π

0
n(θ ) ·

∑
k �=ı

vk(r, θ )rdθ

]
rdr, (34)

where vk(s) = (s−sk )βk

‖s−sk‖2 is a divergence-free vector field
and n = (cos(θ ), sin(θ )). The term inside the brackets
is the flux of

∑
k �=ı vk through the boundary of a disk

D(r ). Using the divergence theorem, this term can be
turned into a surface integral:

∫ 2π

0
n(θ ) ·

∑
k �=ı

vk(r, θ )rdθ

=
∫ ∫

D(r )
div

( ∑
k �=ı

vk(s)

)
ds, (35)
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which vanishes since the vector field
∑

k �=ı vk(s) is
solenoidal. Therefore,

∂Lcso(�)

∂rı
= 0

⇔ 4
∫ ∫

Dı

[wso(s) ∧ (s − sı )] ds

− 4
∫ ∫

Dı

‖s − sı‖2βı

r2
ı

ds

+ r3
ı

βı

∑
k �=ı

∂C(rı , rk)

∂rı
= 0. (36)

Many solutions are available to solve this kind of
non-linear equation, where the integration domain Dı

depends on the unknown variable rı to estimate. We
choose to use a fixed point iteration method. This kind
of techniques consists in solving a problem of the form
x = g(x) with an iteration of the form x (p+1) = g(x (p)).
An iterative fixed point process for the radius is ob-
tained from the current estimate r (p)

ı (and D(p)
ı the cor-

responding domain) by setting:

4
∫ ∫

D(p)
ı

[wso(s) ∧ (s − sı )] ds

− 4

r2
ı

(p+1)

∫ ∫
D(p)

ı

‖s − sı‖2βı ds

+ r3
ı

(p+1)

βı

∑
k �=ı

∂C(rı , rk)

∂rı

∣∣∣∣∣
r (p)

ı

= 0. (37)

which finally reads:

r (p+1)
ı =

√√√√√ B(p)
ı

A(p)
ı + r3

ı
(p)

βı

∑
k �=ı

∂C(rı ,rk )
∂rı

∣∣∣
r (p)

ı

, (38)

with:

A(p)

ı = 4
∫ ∫

D(p)
ı

[wso(s) ∧ (s − sı )] ds,

B(p)
ı = 4

∫ ∫
D(p)

ı

‖s − sı‖2βı ds = 2πr4
ı

(p)
βı .

(39)

Expressions A(p)
ı and B(p)

ı are computed directly from
wso, sı , and r (p)

ı and βı previously estimated.

Choice of the Constraint Functional. At that step,
function C has to be defined. Such a function must
have a low value if constraints are not violated, that is

if (qı = rı + r − dı ) < 0 where dı is the distance
between centers (sı , s ). C should be large otherwise,
i.e. for qı > 0. It is common to employ, for that kind
of problem, an approximation of the Heaviside func-
tion H associated with a very strong coefficient λ (in
practice λ = 1030). One can choose for instance the
approximation proposed by Chan and Vese in [7]:

C(qı ) = λHε(qı ) = λ

2

(
1 + 2

π
atan

(
qı

ε

))
. (40)

The derivative of this function is an approximation of
the Dirac function:

C ′(qı ) = λδε(qı ) = λ

π

ε

ε2 + q2
ı

. (41)

Graphs of these functions are shown in Fig. 4 for dif-
ferent values of ε.

Such functions seem at first glance well adapted
to our problem. As a matter of fact, starting from an
admissible solution (non-overlapping disks), if the dif-
ferent radii grow slowly and continuously, the non-
overlapping assumption is guaranteed through func-
tion ∂C

∂rı
, which keeps solutions into an admissible

domain.
Nevertheless, in our fixed point strategy, the itera-

tive evolution of rı is not necessary “continuous”: the
difference rı (p+1)−rı (p) can be important. As a con-
sequence, if rı (p) respects the constraint, it is possible
(if the evolution is too violent) for rı (p + 1) to have its
value in the domain where constraints are violated. In
that case, following relations (38) and (41), the contri-
bution of ∂C

∂rı
in the estimation of the radius is neglected,

since this constraint is effective only at the frontier of
the admissible domain. The “barrier” imposed at the
frontier to prevent from overlapping has been crossed
and ∂C

∂rı
has no effects.

To cope with this particular phenomenon, we have to
find a function whose derivative become “active” (i.e.
with very strong values) not only at the frontier of two
domains, but all over the non desired area. Instead of
using (40), we preferred to use for C:

C(qı ) = λqı Hε(qı ), (42)

whose derivative is:

C ′(qı ) = ∂C(qı )

∂rı
= λ(Hε(qı ) + qı δε(qı )).

Graphs of C and C ′ are shown in Fig. 5. In that case, C ′

is “active” not only at the frontier of two domains but
also over the whole area where rı (p + 1) is not valid.
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Figure 4. (a) Graphs of a constraint defined as a strong Heaviside function and (b) its derivative for three different values of ε.

Figure 5. (a) Graphs of the proposed constraint and (b) its derivative for ε = 0.5.

3.2.2. Strength Parameters Estimation. In that case,
the partial derivative with respect to one of the βı ’s is:

∂Lcso(�)

∂βı
= 2

∫ ∫
Dı

[
ωso(s) + (s − sı )⊥

r2
ı

βı

+
∑
k �=ı

(s − sk)⊥

‖s − sk‖2
βk

]
· (s − sı )⊥

r2
ı

ds

+ 2
∫ ∫

D̄so

[
ωso(s) +

∑
k

(s − sk)⊥

‖s − sk‖2
βk

]
· (s − sı )⊥

‖s − sı‖2
ds

+ 2
∑
k �=ı

∫ ∫
Dk

[
ωso(s) + (s − sk)⊥

r2
k

βk

+
∑

p �∈{k,ı}

(s − s p)⊥

‖s − s p‖2
βp

]
· (s − sı )⊥

‖s − sı‖2
ds. (43)
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Then:

∂Lso(�)

∂βı
= 0

⇔ −βı

r̂4
ı

∫ ∫
Dı

‖s − sı‖2 ds︸ ︷︷ ︸
π
2 r̂4

ı

+ 1

r̂2
ı

∫ ∫
Dı

[(
ωso(s) +

∑
k �=ı

(s − sk)⊥

‖s − sk‖2
βk

)
· (s − sı )

⊥
]

ds

︸ ︷︷ ︸
π
2 r̂2

ı according to (38–39)1

− βı

( ∫ ∫
D̄so

1

‖s − sı‖2
ds +

∑
k �=ı

∫ ∫
Dk

1

‖s − sk‖2
ds

︸ ︷︷ ︸
A

)

+
∫ ∫

D̄so

[
ωso(s) +

∑
k �=ı

(s − sk)⊥

‖s − sk‖2
βk

]
· (s − sı )⊥

‖s − sı‖2
ds

︸ ︷︷ ︸
B

+
∑
k �=ı

∫ ∫
Dk

[
ωso(s) + (s − sk)⊥

r2
k

βk +
∑

p �∈{k,ı}

(s − s p)⊥

‖s − s p‖2
βp

]
· (s − sı )⊥

‖s − sı‖2︸ ︷︷ ︸
C

= 0

⇔ βı = B + C

A
, with A =

∫ ∫
�−Dı

1

‖s − sı‖2
ds (44)

Quantities A, B, and C can be directly computed from
given observations wso, sı and previous estimated radii
rı and strengths βı . For fixed radius values, we have
here a linear system w.r.t. βı .

The whole estimation process constitutes a kind of
Gauss-Seidel minimization with respect to the differ-
ent unknowns. One of the step (gradient descent w.r.t.
rı ) of this scheme is non linear and is solved with an
iteration fixed point method, whereas the other one is
linear considering current radius values iterates.

3.2.3. Irrotational Case. In the irrotational case, the
parameters of Rankine model may be obtained in a very
similar way. The optimal singularity radius is given by:

r (p+1)
ı =

√√√√ B(p)
ı

A(p)
ı + r3

ı
(p)

αı

∑
k �=ı C ′(r (p)

ı , rk
) , (45)

with:

A(p)

ı = 4
∫ ∫

D(p)
ı

[wir (x, y) · (s − sı )] ds,

B(p)
ı = 4

∫ ∫
D(p)

ı

‖s − sı‖2αı ds = 2πr4
ı

(p)
αı .

(46)

The optimal strength source/sink, α , is given by α =
B+C

A with:

B =
∫ ∫

D̄ir

[
ωir (s) −

∑
k �=

(s − sk)

‖s − sk‖2
αk

]
· (s − s )

‖s − s‖2
ds,

(47)

and

C =
∑
k �=

∫ ∫
Dk

[
ωir (s) − (s − sk)

r2
k

αk

−
∑

p �∈{k,}

(s − s p)

‖s − s p‖2
αp

]
· (s − s )

‖s − s‖2
ds. (48)

Let us remark that in the solenoidal and the irrota-
tional case, the term A is the same. Through Green
theorem this term can be computed from the contour
of domain � − Dı . Green theorem states that for any
continuously differentiable vector field ω

�= (p, q) on
a planar region � we have:∫ ∫

�

(
∂q

∂y
− ∂p

∂x
dx dy

)

=
∫

∂�

p(x, y) dx + q(x, y) dy.
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Table 1. Estimation of Rankine models on the synthetic field of Fig. 6.

Synthetic parameters Estimated parameters

Location Radius Strength Location Radius Strength Error on strength

Source (210, 60) 20 250.0 (211, 60) 21 249.6 0.16%

Sink (100, 180) 30 −150.0 (100, 180) 30 −151.5 1.0%

Vortex (200, 350) 15 −400.0 (201, 350) 15 −399.1 0.22%

Vortex (210, 60) 50 −250.0 (211, 60) 49 −247.9 0.84%

Vortex (50, 50) 20 200.0 (50, 49) 20 205.3 2.65%

Vortex (100, 180) 25 150.0 (101, 180) 26 149.8 0.13%

In our case let us consider:

∂q(x, y)

∂y
= 1

2(x2 + y2)
with q(x, y) = 1

2x
arctan

y

x

and

∂p(x, y)

∂x
= − 1

2(x2 + y2)
with

p(x, y) = − 1

2y
arctan

x

y

we have then:∫ ∫
�

1

x2 + y2
dx dy = 1

2

∫
∂�

− 1

y
arctan

x

y
dx

+ 1

x
arctan

y

x
dy.

The right hand side expression is then much cheaper to
compute numerically.

3.3. Method Summary

Before turning to the experimental results, and in order
to give a clear view of the different treatments involved
by our method, let us summarize the overall proposed
technique for extracting the vortices, sinks and sources
from a given velocity field, and estimating the associ-
ated Rankine models.

For a given dense velocity field, ω, we first sepa-
rate through a 2D Fourier transform the two solenoidal
and irrotational components (13) and (14). From these
components, the stream function ψ and the velocity
potential φ are obtained through the numerical inte-
grations of (15). The search for the local maxima of
functions φ2 and ψ2 gives us the location of the differ-
ent vortices and sinks/sources. To make this step robust,

this maxima extraction—which is obtained in practice
through simple morphological processing of the poten-
tial functions—we consider the Bhattacharyya distance
between two multidimensional Gaussian laws [5]:

dB[N1(µ1, �1),N2(µ2, �2)]

= 1

4
(µ2 − µ1)T (�1 + �2)−1(µ2 − µ1)

+ 1

2
ln

(
det(�2 + �1)

2
√

det(�1�2)

)
. (49)

For each component (i.e., the irrotational one or the
solenoidal one) we compute this distance for the two
Gaussian distributions corresponding to the error be-
tween the considered Rankine model for two con-
secutive numbers of singularities and the known cor-
responding component of the flow. For instance for
the solenoidal component, we compute: dB[N1(ωso −
ωn

�so
),N2(ωso−ωn+1

�so
] where the field ωn

�so
correspond

to a maximum likelihood estimate of Rankine model
with n vortices (38)–(48). Starting with no singular-
ities, we increase successively the number of singu-
larities by considering the highest local maxima of its

Figure 6. Synthetic Rankine motion field associated to the para-
meters of Table 1.
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Figure 7. Results on the synthetic motion field of Fig. 6—(a) solenoidal and (b) irrotational parts of the motion field; (c) stream function and
(d) velocity potential; (e) squared stream function and (f) squared velocity potential and (g, h) the singularities and their associated domains of
linearity superimposed to the corresponding motion field.
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corresponding squared potential function. When the
Bhattacharyya distance between two consecutive mod-
els is small enough (i.e., when the introduction of a new
singularity does not bring additional information) the
process is stopped.

A schematic view of the complete method is as fol-
lows:

(50)

4. Experimental Results

In this section we present some experimental results to
evaluate our method. The experiments have been car-
ried out both on a synthetic benchmark and on three
different real examples. In order to show the accuracy
of the proposed method we present first the results ob-
tained on a synthetic motion field.

Figure 8. (a) Infrared Meteosat image; (b) dense velocity field; (c) parametric Rankine flow.

4.1. Synthetic Example

The synthetic example we consider to assess the per-
formance of our method arises from a Rankine model
involving four vortices, one sink, and one source. The
set of parameters used to obtain the flow are gathered

in the left part of Table 1. The associated velocity field
is presented in Fig. 6.

The results are reported in the right part of Table 1.
They have been obtained on a noisy version of the syn-
thetic motion field.2 For each singularity the parameters
are well recovered (location, radius, strength). In order
to assess the quality of the reconstructed motion field,
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Figure 9. Results on the motion field presented Fig. 8—(a) solenoidal and (b) irrotational parts of the motion field; (c) streamlines and (d)
level curves of the velocity potential; (e) squared stream function and (f) squared velocity potential; estimated singularities superimposed on the
corresponding component of the velocity field: vortices (g) and sinks/sources (h).
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Figure 10. Results on the motion field presented Fig. 11—(a) solenoidal and (b) irrotational parts of the motion field; (c) streamlines and (d)
level curves of the velocity potential; (e) squared stream function and (f) squared velocity potential; estimated singularities: vortices (g) and
sinks/sources (h).
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Figure 11. (a) Water vapor Meteosat image; (b) dense velocity field; (c) parametric Rankine flow.

Figure 12. (a) Infrared Meteosat image; (b) dense velocity field; (c) parametric Rankine flow.

we can quantify its global agreement with the initial
motion field through the angular discrepancy criterion
proposed by Barron et al. [4]. We get an average an-
gular error of 0.40◦ with a standard deviation of 0.38◦

between the true velocity field and the reconstructed
one.

For this synthetic example, we present in Fig. 7 the
two solenoidal and irrotational components that have
been extracted from the initial velocity field. The esti-
mated stream function and velocity potential and their
associated squared functions are also presented in the
second and third rows of the same figure. In the last row
of Fig. 7 we superimposed to the solenoidal and irrota-
tional components the estimated singularity domains.

The computation time for the whole process (field
separation, singular point detection and Rankine model
identification) for this synthetic example is t = 119 s,
on a 440 MHz Sun Ultra 10, the image size being
396 × 276 pixels. It is important to note that most of
this computation time is dedicated to the motion field
decomposition in the Fourier domain (the time needed,
under a Matlab environment, for this decomposition is
t = 72 s which is 60.5% of the global computational
time).

4.2. Real Motion Fields

We show here three results obtained on real velocity
fields. The velocity fields have been estimated with
a motion estimator dedicated to fluid images [10].
As mentioned previously, the corresponding laminar
component is estimated through the same technique,

with a smoothness term enforcing a null divergence
and curl prior. The laminar component enables to fix
the boundary conditions. Indeed, removing this global
transport component from the flow under consideration
then makes reasonable the assumption of vanishing at
infinity.

The first example corresponds to the motion between
two consecutive images of the infra-red channel of
Meteosat, shot the 21st of January 1998. An image
of the sequence is shown in Fig. 8(a). It exhibits a large
trough of low pressure (lower left part of the image)
together with a large cloud structure moving in the up-
per right part of the image. The corresponding vector
field with its laminar component removed is visible in
Fig. 8(b).

The two solenoidal and irrotational components
of this velocity field are shown in the first row of
Fig. 9. The stream lines and the level curves of the
velocity potential are presented in the second row of
the same figure, whereas the squared potential func-
tions are plotted in the third row. The last row of
Fig. 9 presents the estimated singularity domains. The
corresponding parametric velocity field is visible in
Fig. 8(c).

Due to the restricted form of the parametric model
(let us recall that the Rankine model is one of the sim-
plest vortex model), the reconstructed velocity field de-
viates slighty from the real one. The global discrepancy
between the initial dense field and its parametric de-
scription, following the criterion of Barron et al. [4], is
4.71◦ ± 2.18◦. Considering this discrepancy measure,
we see that the main characteristic features of the mo-
tion we have extracted (singular points and radii of their
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Figure 13. Results on the motion field presented Fig. 12—(a) solenoidal and (b) irrotational parts of the motion field; (c) streamlines and (d)
level curves of the velocity potential; (e) squared stream function and (f) squared velocity potential; estimated singularities: vortices (g) and
sinks/sources (h).
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Figure 14. (a, d and g) Original real Meteosat images; (b, e and h) associated dense motion fields; (c, f and i) blobs of singularities estimated
with winding numbers.

associated linear domains) provide a good parametric
description of the flow. The global computation time
for this example is t = 270 s on a 440 Mhz Sun Ultra
10, the image size being 396 × 276 pixels.

The second real example we present corresponds
to water vapor Meteosat images, acquired the 4th of
August 1995. This sequence represents a depression in
the left part of the imaged area and a convective cell in
the center of the image. An image of the sequence and
the associated motion field can be seen on Fig. 11(a)
and (b) respectively.

For this motion field we present Fig. 10 the same
kind of results as in the previous example. The asso-
ciated reconstructed parametric Rankine flow is pre-
sented in Fig. 11. Again, this flow captures well the
main visible structures (four vortices and one source).
The method as it stands is not able to locate, even
roughly singularities which lie outside the image plane.
The consequence of this can be observed in the re-
constructed field: whereas the irrotational component
in Fig. 10(b) strongly suggests the presence of one
or two singularities, on the left, outside the image
plane the estimated parametric Rankine flow does

not capture them, which limits the accuracy of the
reconstruction.

The global discrepancy between the dense and the
reconstructed motion field, following [4], is 6.46◦ ±
4.64◦. The global computation time is t = 121 s on a
Sun Ultra 10 (440 Mhz), for a 512 × 256 image. We
can remark that whereas the image size is larger than
in previous example, the computation time is lower.
This is due to a lower number of singularities detected.
The computation time depends more on the number of
singularities than on the image size.

The last velocity field corresponds to an infrared
Meteosat sequence, acquired the 4th of August 1995.
It represents the explosion of active convective cells.
These cells are associated to high vertical motion. They
are therefore the center of highly diverging area within
the 2D apparent motion field. An image of the sequence
and the associated dense motion field are shown on
Fig. 12(a) and (b).

Figure 13 presents the results obtained for this ex-
ample. As we can see, the two main convective cells
are very well captured. We have also extracted different
vortices accounting for secondary motions of the cells
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present in the image. The corresponding reconstructed
parametric field is also shown Fig. 12.

The global discrepancy between the true and the re-
constructed motion field is 5.62◦ ± 2.15◦. Again, de-
spite the simplicity of the model used, the global para-
metric description of the flow represents in a compact
but informative way the original dense motion field.
The global computation time is t = 48 s on a Sun Ultra
10 (440 Mhz), for a 256 × 128 image.

4.3. Comparison with Winding Numbers Technique

Other techniques are available to extract singular points
from a dense motion field. One of the most popular is
based on the use of Poincaré indices also called winding
numbers. The winding number (or index) of a closed
curve in a vector field amounts to the numbers of turns,

1
2π

∫
d(tan−1 u/v), that the field undergoes along the

curve. Its value is +1 if the considered Jordan curve
surrounds a vortex/sink/source [8, 21, 30]. In practice,
due to the image discretization, a small blob (whose
size depends on the size of used curve) of +1 index
pixels is obtained in the neighborhood of a singular
point.

This method has the advantage to be fast. Never-
theless, it remains based on a local criterion which is
not robust to noise. Furthermore, only blobs contain-
ing a potential singular point may be detected with such
technique; the concerned point has then to be extracted
from such blobs with other adhoc techniques.

In order to visualize the difference between such
an approach and the one we propose, we present, in
Fig. 14, for the three real motion fields, the different
blobs detected with winding index.

We can note that the correct singular points are al-
ways detected. Nevertheless, the results are cluttered
by a large number of false positives due to the sensitiv-
ity of the technique. Those spurious points have then
to be removed with some post-processing treatments.

5. Conclusion

We have proposed an original technique to detect singu-
lar points and their associated domain of linearity from
dense motion fields measured in image sequences. This
technique is based on the decomposition of the motion
field in terms of its irrotational and solenoidal com-
ponents. From these components, we extract by inte-
gration the associated stream function and the velocity

potential, whose local extrema provide the location of
vortices and sinks/sources. The strength and linearity
domain associated to each of these detected singular
points are then obtained from a maximum likelihood
estimation of a parametric Rankine model.

This method has been validated on synthetic and real
examples, and has proved to extract the main structures
of a motion field. Compared to an usual winding num-
ber technique, our approach is more robust to various
sources of noise.

As a by product, the approach provides a simple way
to extract streamlines, velocity potential, solenoidal
or irrotational components, which are central to most
studies of fluids.

As a final remark let us outline that the method
described here is fast and requires no tuning of
parameters.

Let us also note that the proposed method could be
easily included directly within a dense motion estima-
tion stage as it is proposed in [21]. Such approach would
then lead to a joint estimation-segmentation scheme
adapted to fluid motion.

Appendix

Considering a domain D delineated by a circle ∂D of
radius R and the domain D̄ exterior to the disk, we
show in this appendix that the derivative with respect
to R of∫ ∫

D
f (x, y, R) dx dy +

∫ ∫
D̄

g(x, y, R) dx dy, (51)

where f and g coincide on circle ∂D, is

∂

∂ R

(∫ ∫
D

f (x, y, R) dx dy +
∫ ∫

D̄
g(x, y, R) dx dy

)

=
∫ ∫

D

∂ f (x, y)

∂ R
dx dy +

∫ ∫
D̄

∂g(x, y)

∂ R
dx dy.

(52)

Let us first consider the function:

H (R) =
∫ ∫

D
f (x, y, R) dx dy.

We want to compute the partial derivative ∂ H
∂ R . In po-

lar coordinate with origin the center of disk D, this
derivative is defined by (with slight abuse of notation
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f (r, θ, R) stands for f (r cos θ, r sin θ, R)):

H ′(R) = lim
h→0

1

h

[ ∫ 2π

0

∫ R+h

0
f (r, θ, R + h) rdr dθ

−
∫ 2π

0

∫ R

0
f (r, θ, R) r dr dθ

]

= lim
h→0

1

h

[ ∫ 2π

0

∫ R+h

0
f (r, θ, R + h) r dr dθ

−
∫ 2π

0

∫ R

0
f (r, θ, R + h) r dr dθ

+
∫ 2π

0

∫ R

0
f (r, θ, R + h) r dr dθ

−
∫ 2π

0

∫ R

0
f (r, θ, R) r dr dθ

]

= lim
h→0

1

h

[ ∫ 2π

0

∫ R+h

R
f (r, θ, R + h) r dr dθ

+
∫ 2π

0

∫ R

0
f (r, θ, R + h)

− f (r, θ, R) r dr dθ

]

=
∫ 2π

0
f (R, θ, R) R dθ

+
∫ 2π

0

∫ R

0

∂ f (r, θ, R)

∂ R
r dr dθ

=
∫

∂D
f +

∫ ∫
D

∂ f

∂ R
. (53)

The derivation of function

J (R) =
∫ ∫

D̄
g(x, y, R) dx dy,

is then readily obtained by noting that

J (R) =
∫ ∫

�

g −
∫ ∫

D
g.

The derivation of the first term in the right hand side
yields

∫∫
�

∂g
∂ R and the one of the second term is similar

to the one of H (R):

J ′(R) =
∫ ∫

�

∂g

∂ R
−

[∫
∂D

g +
∫ ∫

D

∂g

∂ R

]

=
∫ ∫

D̄

∂g

R
−

∫
∂D

g. (54)

By continuity at circular boundary ∂D, implying∫
∂D f = ∫

∂D g we get:

∂

∂ R

(∫ ∫
D

f +
∫ ∫

D̄
g

)

=
∫ ∫

D

∂ f (R)

∂ R
+

∫ ∫
D̄

∂g(R)

∂ R
. (55)
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Notes

1. When we estimate strengthsβı s, all radii rı s respect the constraint,
and C′(rı , r ) = 0∀ (ı,  ).

2. Each component of the velocity field has been corrupted by a
centered Gaussian noise (σ = 0.9).
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